
3.4 The Time Dependent Schrödinger Equation 

To begin with, we consider the one-dimensional motion of a free particle of mass 

m, moving in the positive x direction with momentum p and energy E. Such a particle can 

be described by the monochromatic plane wave 

  

 

  

 

 

Therefore; 

 

This is the one-dimensional time-dependent Schrödinger equation for a free particle. 
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Since the Schrodinger equation is linear and homogeneous, it will also be satisfied by the 

wave packet 

 

which is a linear superposition of plane waves and is associated with a ‘localised’ free 

particle. We have 

 

The righthand sides of the above two equations are equal, (where 𝐸 =
𝑃2

2𝑚
) and hence we 

obtain equation (3.8). 

To see how it satisfies the correspondence principle, we note that this equation is the 

quantum mechanical ‘translation’ of the classical equation (𝐸 =
𝑃2

2𝑚
), where the energy E, 

and the momentum p are represented by differential operators 

 

The expression for the plane wave in three dimensions 
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3.5 Particle in a Force-field 
 

The case of a particle acted by a force which is derivable from a potential V(r, t). 

According to classical mechanics, the total energy of the particle would be given by; 

 

Since V does not depend on E or p, the above discussion for the free particle suggests that 

the wave function should satisfy 

 

The operator on the right-hand side is called the Hamiltonian operator and is denoted 

by the symbol H:  
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The name follows from the fact that in classical mechanics the sum of the kinetic and the 

potential energies of a particle is called its Hamiltonian. 

3.6 Statistical Interpretation of The Wave Function and Conservation of 

Probability 

If a particle is described by a wave function Ψ(𝐫, t), then the probability of finding the 

particle, at time t, within the volume element 𝑑𝒓 = 𝑑𝑥 𝑑𝑦 𝑑𝑧 about the point 𝒓 ≡

(𝑥, 𝑦, 𝑧) is 

 

is obviously called the position probability density. Since the probability of finding the 

particle somewhere at time t is unity, the normalization condition, 

 

where the integral extends over all space.  

 What happens as time changes.? 

 It is clear that the probability of finding the particle somewhere must remain conserved. 

That is, the normalization integral in (3.22) must be independent of time. 

  

In order to prove this, 

By use the Schrödinger equation 
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Multiplying (3.24) by Ψ∗  and (3.25) by Ψ on the left and then subtracting, we get 

 

Now, consider the time derivative of the integral of Ψ∗Ψ over a finite volume V. We 

have, 

 

Let us define a vector 

𝒋(𝒓, 𝑡) =
−𝑖ℏ

2𝑚
(Ψ∗𝛁Ψ − Ψ𝛁Ψ∗) 

Substituting in (3.27), 

 

  

Using Green’s theorem (also called Gauss’ divergence theorem) we can convert the 

volume integral on the right into an integral over the surface S bounding the volume V: 

 

 

Since a square integrable wave function vanishes at large distances, the surface integral 

becomes zero and hence (3.23) is proved. 
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By using (3.26) 
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